
i
i

i
i

i
i

i
i

Simple Rasterization-based
Liquids

Martin Guay

Rasterization pipelines are ubiquitous today. They are found in most of
our personal computers as well as in smaller, hand-held devices—like smart
phones—with lower-end hardware. While Compute Shaders allow much
more flexibility, they are only available on higher-end material, and there-
fore still have limited scope. Simulating particle-based liquids requires sort-
ing the particles which is cumbersome when using a rasterization pipeline.

In this chapter, we describe a method to simulate liquids without having
to sort the particles. Our method was specifically designed for these archi-
tectures and low shader model specifications (starting from shader model 3
for 3D liquids). Instead of sorting the particles, we splat them onto a grid
(i.e. a 3D or 2D texture) and solve the inter-particle dynamics directly on
the grid. Splatting is simple to perform in a rasterization pipeline, but can
also be costly. Thanks to the simplified pass on the grid, we only need to
splat the particles once.

The grid also provides additional benefits: we can easily add artificial
obstacles for the particles to interact with, we can ray cast the grid directly
to render the liquid surface, and we can even gain a speed up over sort-
based liquid solvers—such as the optimized solver found in the DirectX 11
SDK.

1.1 Introduction

Simulating liquids requires dealing with two phases of fluid—the liquid and
the air—which can be tricky to model as special care may be required for
the interface between the two phases depending on the fluid model. In
computer graphics, there are mainly two popular formulations for fluids:
strongly incompressible and weakly incompressible.

The strong formulation is usually more complex as it requires a hard
constraint (e.g. solving a Poisson eq.), but is more accurate and therefore
more visually pleasing. Because it is more complex, it is often used along
simple, regular grid discretizations [Stam 99]. For liquids, several inter-
mediate steps are required for the surface to behave adequately [Enright

1

i
i

i
i

i
i

i
i

2 1. Simple Rasterization-based Liquids

et al. 02]. Implementing these steps using rasterization APIs is challenging.
For instance, [Crane et al. 07] only partially implements them and the fluid
behaves more like a single phase fluid. Furthermore, the strong formulation
requires a surface representation like a level-set density field which requires
its own set of specificities (re-initialisation). Again, in [Crane et al. 07] the
level-set method is only partially implemented and had to be hacked into
staying at a certain height; preventing them from generating such scenarios
as the water jet shown in Fig. 1.3.

The weak formulation on the other hand, requires only a simple soft
constraint to keep the fluid from compressing. It is much simpler, but also
less accurate. It is often used along particle discretizations and mesh-free
numerical schemes like Smooth Particles Hydrodynamics (SPH) [Desbrun
and Cani 96]. The advantage of the weak formulation along particles is
really for liquids. This combination allowed reproducing the behavior of
liquids without computing any surface boundary conditions similar to [En-
right et al. 02]. Additionally, the particles can be used directly to render the
liquid surface and there is no need for a level-set. The drawback however,
is that particles require finding their neighbors, in order to compute forces
ensuring they keep at a minimal distance. Typically buckets or other spa-
cial sorting algorithms are used to cluster the particles into groups [Amada
et al. 04,Rozen et al. 08,Bayraktar et al. 08], which can be cumbersome to
implement using rasterization APIs.

When using rasterization APIs, we find it more natural to rasterize,
or splat the particles onto a grid instead of spatially sorting the particles.
Then, we use the simplicity of the grid and finite difference to compute
all the forces—including the soft incompressibility constraint—in a single
pass. Some have considered splatting before [Kolb and Cuntz 05], but
had to splat for each force (Pressure and Viscosity), while we only need
to splat once—for all the forces. Finally, the particles are corrected and
moved by sampling the grid—which in turn can also be used directly to
render the liquid surface by ray casting the splatted density. Overall, our
method allows treating each particle independently while making sure they
automatically repulse one-another and avoid rigid obstacles in the domain.

1.2 Simple Liquid Model

Our liquid model is best described as follows: particles are allowed to move
freely in the domain while their mass and kinetic energy remains conserved.
For instance, if we add gravity it should translate into velocity u. To keep
the particles from interpenetrating, we add an incompressibility constraint
P derived from the density ρ of particles and the resulting force is the
negative gradient of P :

i
i

i
i

i
i

i
i

1.2. Simple Liquid Model 3

Figure 1.1. Illustrating the scalar density field used to defined the pressure
constraint. The pressure force is proportional to the density gradient pushing
the particles towards minimum density. For simplicity, we show the idea in 2D
with density shown as a height field—which, can also be used as the liquid surface
in Shallow Water simulations (see Fig. 1.4).

Dρ

Dt
= 0, (1.1)

Du

Dt
= −∇P + g + fext, (1.2)

where g gravity and fext accounts for external forces such as user in-
teractions. The terms Dρ

Dt and Du
Dt account for the transport of density

and velocity. There is never any density added nor removed, it is only
transported and held by the particles leading to Dρ

Dt = 0. Energy added
to the velocity—like gravity—needs to be conserved as well, resulting in
equation (1.2). Next we define the incompressibility constraint P , and how
to compute the density of particles ρ.

1.2.1 Pressure Constraint

To keep the fluid from compressing and the particles from inter-penetrating,
we penalize high density: P = kρ [Desbrun and Cani 96], where k is
a stiffness parameter that makes the particles repulse one another more
strongly (but can also make the simulation unstable if too large). Hence,
by minimizing the density, the particles will move in the direction that
reduces density the most and thereby avoiding each other. At the same
time, gravity and boundary conditions like the walls, will act as to keep
the particles from simply flying away.

i
i

i
i

i
i

i
i

4 1. Simple Rasterization-based Liquids

Figure 1.2. Splatting consists in rasterizing the smooth kernel function, the 2D
case shown here in red. In Fig. 1.1, we see the sum of all the kernel functions; a
scalar field representing the density of particles.

Keeping the particles from interpenetrating is crucial in particle-based
liquid simulations. To give strict response to the particles that are close
to colliding, we can make the density nonlinear leading to the pressure

constraint [Becker and Teschner 07]: P = k
(

ρ
ρ0

)γ

, where γ is an integer

(5 in our case). Dividing by the initial density ρ0 comes in handy for
stability; it becomes easier to control the magnitude of the force through
the parameter k and thereby keeping the simulation stable.

Setting the initial ρ0 can be tricky. It should be proportional an evalu-
ation of ρ at an initial rest configuration; i.e. with a uniform distribution
of particles. In practice however, we can set it manually. We approxi-
mate ρ by performing a convolution, which we pre-compute on a texture
by rasterizing, or splatting the kernels of each particle.

1.3 Splatting

To evaluate the density of particles smoothly, we perform a convolution: the
density is the weighted average of the surrounding discrete samples; in this
case the particles. The weight is given by a kernel function which falls off
exponentially with distance, as shown in Fig. 1.2. Instead of sampling the
nearby particles, we rasterize the kernel function centered at each particle.
The final result is a smooth density grid (texture)—like the one shown in
Fig. 1.1—that is equivalent to a convolution evaluation at each point on
the texture. We could say also that we now have a virtual particle on each
grid cell.

i
i

i
i

i
i

i
i

1.4. Grid Pass 5

1.3.1 Rasterizing Kernel Functions

To update the velocity on the grid, we need to transfer both the density
of the particles—to compute pressure—and their velocity. Hence, the first
step in our algorithm is to rasterize the smooth kernel function (red in
Fig. 1.2) and the weighted velocity of each particle. We render the particles
as points and create quad slices—spanning a cube—in the geometry shader.
For each corner vertex xi, we write the distance d = ∥xi−xp∥ to the center
of the particle xp, and let the rasterizer perform the interpolation between
vertices. Then, in a pixel shader, we render the smooth kernel value w(d, r)
to the alpha channel, and the weighted velocity w(d, r)up to the other 3
channels—in an additive fashion. Finally, the density on the grid can be
sampled by multiplying the sum of kernel weights by the mass, and the
velocity, by dividing the sum of weighted velocities by the sum of weights:

ρ(xi) = mi

∑
p

w (∥xi − xp∥, r) u(xi) =

∑
p w (∥xi − xp∥, r)up∑
p w (∥xi − xp∥, r)

,

where i denotes texture indices, p particle indices, and r the kernel
radius. We used the following convolution kernel:

w(d, r) =

(
1− d2

r2

)3

.

Next we update the velocity field on the grid as to make the particles
move in a direction that keeps them from compressing; by computing a
pressure force from the density of particles and adding it to the velocity.

1.4 Grid Pass

In the grid pass, we update the splatted velocity field with the pressure
force, gravity, and artificial pressure for obstacles (see Section 1.6). We
compute the pressure gradient using a finite difference approximation and
add forces to the velocity field using forward Euler integration:

un+1 = un −∆t

(
P (xi+1)− P (xi−1)

∆x
,
P (xj+1)− P (xj−1)

∆y

)
, (1.3)

where ∆t is the time step, ∆x the spatial resolution of grid, and n the
temporal state of the simulation.

While we update the velocity, we set the velocity on the boundary cells
of the grid to a no-slip boundary condition by setting the component of the

i
i

i
i

i
i

i
i

6 1. Simple Rasterization-based Liquids

velocity which is normal to the boundary to 0. This is a simple boundary
test; before writing the final velocity value, we check if the neighbor is a
boundary and set the component of the velocity in that direction to 0.

1.5 Particle Update

We update the position and velocity of particles following the Particle-In-
Cell (PIC) and Fluid-In-Particle (FLIP) approaches that mix particles and
grids [Zhu and Bridson 05]. The main idea with these numerical schemes
is that instead of sampling the grid to assign new values (e.g. velocities) to
the particles, we can recover only the differences to their original values.

1.5.1 Particle Velocity

In PIC, the particle’s velocity is taken directly from the grid, which tends
to be very dissipative, viscous and leads to damped flow. For more lively
features and better energy conservation, FLIP assigns only the difference
in velocities; the difference between the splatted velocity and the updated
splatted velocity discussed in Section 1.4.

By combining both PIC and FLIP, the liquid can be made very viscous
like melting wax, as it can also be made very energetic like water. A
parameter r lets the user control the amount of each:

up = run+1(xp) + (1− r)(up −∆u),

with ∆u = un(xp)− un+1(xp),

where un and un+1 are grid velocities before and after the velocity
update in Section 1.4, and xp,up are the particle’s position and velocity.
Using a bit of PIC (r = 0.05) is useful in stabilizing the simulation per-
formed with explicit Euler integration, which can become unstable if the
time step is too large.

1.5.2 Particle Position

While we update the particle velocity, we also update the particle positions.
We integrate the particle position using two intermediate steps of Runge-
Kutta 2 (RK2); each time sampling the velocity on the grid. The second
order scheme is only approximate in our case because the velocity field on
the grid is kept constant during integration. At each intermediate step,
we keep the particles from leaving the domain by clamping their positions
near the box boundaries:

i
i

i
i

i
i

i
i

1.6. Rigid Obstacles 7

xn+1
p = ∆tun+1(x

n+ 1
2

p) with x
n+ 1

2
p = 0.5∆tun+1(xn

p).

Note that we never modify the density value of the particles.

1.6 Rigid Obstacles

We can prevent the particles from penetrating rigid obstacles in the domain
by adding an artificial pressure constraint where the objects are. This
follows the same logic as with the particle density; we define a smooth
distance field to the surface of the object which can also be viewed as a
density field. We can use analytical functions for primitives like spheres to
approximate the shape of the objects. This avoids rasterizing volumes or
voxelizing meshes on the GPU. Alternatively, one could approximate shapes
using Metaballs [Blinn 82], and implicit surfaces which naturally provide a
distance field. No matter which approach we choose, the gradient of these
distance fields ρObstacle can be computed analytically or numerically and
plugged into the velocity update formula covered in Section 1.4.

When looking at the Shallow Water Equations (SWE), we find similar-
ities with the equations outlined in this chapter. In fact, by looking at the
density field as the height field of a liquid surface, we can imagine using our
method directly for height field simulations shown in Fig. 1.4. On the other
hand, there is usually a ground height term in the SWE. This in turn can
be interpreted in 3D as a distance field for rigid objects as we mentioned
above.

1.7 Examples

We show a few simulation examples implemented with HLSL, compiled as
level 4 shaders. They include a 3D liquid with rigid objects in the domain,
a 2D shallow water height field simulation, and a 2D simulation comparing
with the optimized Direct Compute implementation of SPH available in
the DirectX 11 SDK. Measures include both simulation and rendering. We
splat particles with a radius of 3 cells on 16-bit floating point textures
without any significant loss in visual quality. In general we used a grid size
close to d

√
NP texels per axis, where d is the domain dimension (2 or 3) and

NP is the total number of particles.
In Fig. 1.3, we rendered the fluid surface by raycasting the density

directly. We perform a fixed number of steps and finish with an FXAA
anti-aliasing pass (frame buffer size 1024×768). We used 125k particles on
a 963 texture and the simulation performs at 35 frames per second (FPS)
on a Quadro 2000M graphics card.

i
i

i
i

i
i

i
i

8 1. Simple Rasterization-based Liquids

Figure 1.3. A 3D liquid simulation with obstacles in the domain implemented us-
ing the rasterization pipeline. The simulation runs at 35 FPS using 125k particles
on a Quadro 2000M graphics card.

Figure 1.4. The shallow water equations describe the evolution of water height
over time. By looking at the height as the density of a 2D fluid, we see the
equations becoming similar. Hence, our method can be used directly to simulate
height fields. This figure shows a SWE simulation with 42k particles using our
method.

In Fig. 1.4, we see a shallow water simulation using 42k particles on a
2562 grid. The simulation and rendering together run at 130 FPS using
the same graphics card.

We compared our solver qualitatively with the SPH GPU implementa-
tion in the DirectX 11 SDK (Fig. 1.5). Their solver is implemented using
the Direct Compute API, has shared memory optimizations and particle
neighbor search acceleration. Ours uses HLSL shaders only. In table 1.6,
we compare the performance of both methods with different particle quanti-
ties. We can see that our method scales better with the number of particles
involved for a given grid size and splatting radius on the hardware we used.

i
i

i
i

i
i

i
i

1.8. Conclusion 9

Figure 1.5. Comparison between an optimized SPH solver implemented with
Compute Shaders on the left and our method implemented with rasterization
APIs. Our method performs at 296 FPS using while the optimized SPH solver
runs at 169 FPS.

Particle Grid Size Our Method DX SDK 11 Speedup
Amount Dim(ϕ,u) (FPS) (FPS) Ratio

64, 000 2562 296 169 1.75
32, 000 2562 510 325 1.55
16, 000 2562 830 567 1.45

Figure 1.6. Comparison between our method and the optimized SPH solver found
in the DirectX 11 SDK.

1.8 Conclusion

In GPU Pro 2, we described the $1 fluid solver: by combining the simplic-
ity of weakly incompressible fluids, with the simplicity of grids, we could
simulate a single phase fluid (smoke or fire) in a single pass [Guay et al. 11].
In this chapter, we described the $1 liquid solver for rasterization APIs by
combining the simplicity of the particles for dealing with liquids, with the
simplicity of the grids to compute the forces. This is useful in getting a liq-
uid solver running quickly on platforms that do not necessarily implement
compute APIs.

Bibliography

[Amada et al. 04] T. Amada, M. Imura, Y. Yasumoto, Y. Yamabe, and
K. Chihara. “Particle-based Fluid simulation on gpu.” In ACM Work-
shop on General-Purpose Computing on Graphics Processors, pp. 228–
235. ACM, 2004.

i
i

i
i

i
i

i
i

10 BIBLIOGRAPHY

[Bayraktar et al. 08] S. Bayraktar, U. Güdükbay, and B. Özgüç. “GPU-
Based Neighbor-Search Algorithm for Particle Simulations.” journal
of graphics, gpu, and game tools 14:1 (2008), 31–42.

[Becker and Teschner 07] M. Becker and M. Teschner. “Weakly compress-
ible SPH for free surface flows.” In Proceedings of Eurographics/ ACM
SIGGRAPH Symposium on Computer Animation 2007, pp. 209–218,
2007.

[Blinn 82] J. F. Blinn. “A generalization of algebraic surface drawing.”
ACM Transactions on Graphics (TOG) 1:3 (1982), 235–256.

[Crane et al. 07] K. Crane, I. Llamas, and S. Tariq. Real-time simulation
and rendering of 3d fluids, GPU Gems, 3, Chapter 30. Addison Wesley,
2007.

[Desbrun and Cani 96] M. Desbrun and M.P. Cani. “Smoothed particles:
A new paradigm for animating highly deformable bodies.” In Proceed-
ings of Eurographics Workshop on Animation and Simulation, pp. 61–
76, 1996.

[Enright et al. 02] D. Enright, S. Marschner, and R. Fedkiw. “Animation
and rendering of complex water surfaces.” In Proceedings of the 29th
SIGGRAPH, pp. 736–744, 2002.

[Guay et al. 11] M. Guay, F. Colin, and R. Egli. Simple and Fast Fluids,
GPU Pro, 2, Chapter VII-3, pp. 433–444. A.K. Peters Ltd, 2011.

[Kolb and Cuntz 05] A. Kolb and N. Cuntz. “Dynamic particle coupling
for gpu-based fluid simulation.” In Proceedings of the 18th Symposium
on Simulation Technique, pp. 722–727, 2005.

[Rozen et al. 08] T. Rozen, K. Boryczko, and W. Alda. “GPU Bucket Sort
Algorithm with Applications to Nearest-neighbour Search.” In Jour-
nal of the 16th Int. Conf. in Central Europe on Computer Graphics,
Visualization and Computer Vision 16:1-3 (2008), 161–167.

[Stam 99] J. Stam. “Stable Fluids.” In Proceedings of the 26th ACM SIG-
GRAPH conference, pp. 121–128, 1999.

[Zhu and Bridson 05] Y. Zhu and R. Bridson. “Animating Sand as a
Fluid.” In Proceedings of ACM SIGGRAPH 2005, pp. 965–972, 2005.

